4.8 Article

Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-37486-w

Keywords

-

Ask authors/readers for more resources

By using in situ laser illumination inside a scanning electron microscope, this study characterizes the photo-induced ion migration in perovskites. Long-range migration of halide ions both on the surface and inside the bulk, as well as the vertical migration of lead ions, were observed. These findings provide valuable insights for the design and processing of perovskite materials.
Organic-inorganic hybrid perovskites exhibiting exceptional photovoltaic and optoelectronic properties are of fundamental and practical interest, owing to their tunability and low manufacturing cost. For practical applications, however, challenges such as material instability and the photocurrent hysteresis occurring in perovskite solar cells under light exposure need to be understood and addressed. While extensive investigations have suggested that ion migration is a plausible origin of these detrimental effects, detailed understanding of the ion migration pathways remains elusive. Here, we report the characterization of photo-induced ion migration in perovskites using in situ laser illumination inside a scanning electron microscope, coupled with secondary electron imaging, energy-dispersive X-ray spectroscopy and cathodoluminescence with varying primary electron energies. Using methylammonium lead iodide and formamidinium lead iodide as model systems, we observed photo-induced long-range migration of halide ions over hundreds of micrometers and elucidated the transport pathways of various ions both near the surface and inside the bulk of the samples, including a surprising finding of the vertical migration of lead ions. Our study provides insights into ion migration processes in perovskites that can aid perovskite material design and processing in future applications. Ion migration is a plausible origin of material instability and photocurrent hysteresis in perovskite solar cells. Here, authors characterize photo-induced ion migration in perovskites by in situ laser illumination inside scanning electron microscope and observe long-range migration of halide ions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available