4.8 Article

Electrified hydrocarbon-to-oxygenates coupled to hydrogen evolution for efficient greenhouse gas mitigation

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-37382-3

Keywords

-

Ask authors/readers for more resources

The production of hydrogen and hydrocarbon refining contribute significantly to CO2 emissions in the chemicals industry. Coupled electrification can cut emissions by up to 39%, even with the current electricity mix. Chemicals manufacturing is a major greenhouse gas emitter, with over half of the emissions coming from ammonia and oxygenates. By using electrolyzer systems that convert hydrocarbons to oxygenates and generate H-2 from water, emissions from fossil-based ammonia and oxygenates can be reduced by up to 88%. Low-carbon electricity is not necessary for a substantial reduction in global chemical industry emissions, as a 39% reduction can be achieved with the electricity carbon footprint available in the US or China today. Researchers interested in this area are provided with considerations and recommendations.
The production of hydrogen, and the refining of hydrocarbons, are significant contributors to the CO2 emissions of the chemicals industry. Coupled electrification of these processes has the potential to reduce total emissions by up to 39% even when using the electricity mix available today. Chemicals manufacture is among the top greenhouse gas contributors. More than half of the associated emissions are attributable to the sum of ammonia plus oxygenates such as methanol, ethylene glycol and terephthalic acid. Here we explore the impact of electrolyzer systems that couple electrically-powered anodic hydrocarbon-to-oxygenate conversion with cathodic H-2 evolution reaction from water. We find that, once anodic hydrocarbon-to-oxygenate conversion is developed with high selectivities, greenhouse gas emissions associated with fossil-based NH3 and oxygenates manufacture can be reduced by up to 88%. We report that low-carbon electricity is not mandatory to enable a net reduction in greenhouse gas emissions: global chemical industry emissions can be reduced by up to 39% even with electricity having the carbon footprint per MWh available in the United States or China today. We conclude with considerations and recommendations for researchers who wish to embark on this research direction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available