4.8 Article

A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer

Related references

Note: Only part of the references are listed.
Review Chemistry, Multidisciplinary

Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting

Yuting Luo et al.

Summary: The electrochemical water splitting technology is crucial for achieving global carbon neutrality. High-performance electrocatalysts that can operate at high current densities are essential for the industrial implementation of this technology. Recent advancements in this field have led to the development of various catalysts designed specifically for high current densities (> 200 mA cm(-2)). This article discusses these recent advances and summarizes the key factors that influence the catalytic performance in high current density electrocatalysis, including catalyst dimensionality, surface chemistry, electron transport path, morphology, and catalyst-electrolyte interaction. It highlights the importance of a multiscale design strategy that considers these factors comprehensively for developing high current density electrocatalysts. The article also provides insights into the future directions of this emerging field.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Accelerating CO2 Electroreduction to Multicarbon Products via Synergistic Electric-Thermal Field on Copper Nanoneedles

Baopeng Yang et al.

Summary: Electrochemical CO2 reduction is a promising method for reducing CO2 emissions. This study presents a generic strategy to enhance the local electric field and temperature simultaneously, significantly improving the catalytic ability of copper nanoneedles and resulting in improved C-2 production.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Review Chemistry, Multidisciplinary

Low-Dimensional Electrocatalysts for Acidic Oxygen Evolution: Intrinsic Activity, High Current Density Operation, and Long-Term Stability

Shuqi Hu et al.

Summary: The production of green hydrogen through water electrolysis is crucial for achieving carbon neutrality worldwide. Acidic water electrolysis has gained significant attention due to its higher current density operation and energy conversion efficiency compared to alkaline water electrolysis. However, the four-electron-transfer oxygen evolution reaction (OER) limits the overall efficiency of water electrolysis devices. Recent studies have focused on improving the intrinsic activity, high current density operation, and long-term stability of acidic OER catalysts through strategies such as surface chemistry engineering and constructing porous structures.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Structural Buffer Engineering on Metal Oxide for Long-Term Stable Seawater Splitting

Linzhou Zhuang et al.

Summary: Seawater electrolysis is an attractive technique for mass production of green hydrogen. However, the presence of chloride ions in seawater can lead to deactivation of the oxygen evolution reaction (OER) catalysts. By utilizing a structural buffer engineering strategy, Co-2(OH)(3)Cl demonstrates long-term stability and a high OER selectivity in seawater electrolysis.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Efficient Alkaline Water/Seawater Hydrogen Evolution by a Nanorod-Nanoparticle-Structured Ni-MoN Catalyst with Fast Water-Dissociation Kinetics

Libo Wu et al.

Summary: This study demonstrates a heterogeneous Ni-MoN catalyst with outstanding performance for high-current-density water electrolysis. The catalyst, consisting of nanoparticles and nanorods, possesses abundant active sites and a hydrophilic surface that facilitates gas-release and prevents catalyst degradation. Theoretical calculations confirm the synergistic effect of Ni and MoN, as well as the improved water-dissociation kinetics at the Mo sites.

ADVANCED MATERIALS (2022)

Article Multidisciplinary Sciences

A membrane-based seawater electrolyser for hydrogen generation

Heping Xie et al.

Summary: This article introduces a method for direct seawater electrolysis for hydrogen production, which can solve the problems of side reactions and corrosion. In the experiment, this method stably operated for over 3200 hours under practical application conditions. The method is efficient, size-flexible, scalable, and has high practical value without increasing the operation cost.

NATURE (2022)

Article Chemistry, Physical

Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts

Yansong Zhou et al.

Summary: Scientists have discovered that using inorganic nickel oxygenate-derived electrocatalysts can efficiently convert CO2 into C-3 to C-6 hydrocarbons, with a Faradaic efficiency of up to 6.5%. This is in contrast to metallic nickel, which shows little to no activity. The study reveals that atom polarization is key in preventing nickel poisoning and enabling the reduction of CO2 into valuable products.

NATURE CATALYSIS (2022)

Article Chemistry, Multidisciplinary

A Unique NiOOH@FeOOH Heteroarchitecture for Enhanced Oxygen Evolution in Saline Water

Bin Wu et al.

Summary: This study successfully fabricates metal oxy(hydroxide) nanosheet structures and demonstrates their outstanding electrocatalytic performance for the oxygen evolution reaction (OER) in saline water. The different structures of NiOOH and NiOOH@FeOOH (NiOOH grown on FeOOH) are formed through electrochemical activation, and the underlayer of FeOOH plays a critical role in enhancing the OER activity of NiOOH. An unconventional dual-sites mechanism (UDSM) is proposed to explain the OER process on NiOOH@FeOOH.

ADVANCED MATERIALS (2022)

Review Materials Science, Multidisciplinary

Engineering membrane electrode assembly for advanced polymer electrolyte water electrolyzer

Heming Liu et al.

Summary: As an important carbon-neutral energy carrier, green hydrogen produced through water electrolysis using renewable electricity has gained global attention. Polymer electrolyte water electrolyzers (PEWEs) have the potential to play a key role in the green hydrogen market due to their superior performance. However, the slow progress in the development of the membrane electrode assembly (MEA), an essential component of PEWE, hinders the advancement of PEWEs. This review discusses recent progress in MEA materials and design strategies, focusing on cost, activity, and stability of catalysts, distribution and thickness of ionomers, and ion transport efficiency of ion exchange membranes (IEMs). The effects of all components and interlayer interfaces on ions, electrons, and mass transfer in MEA, and consequently, the performance of PEWEs are analyzed. Perspectives on MEA development through optimization of catalyst activity and IEM stability, interface contact between adjacent components, and performance evaluation methods are proposed.

SCIENCE CHINA-MATERIALS (2022)

Review Nanoscience & Nanotechnology

Strategies of Anode Design for Seawater Electrolysis: Recent Development and Future Perspective

Tanveer ul Haq et al.

Summary: This review discusses the additional challenges of seawater electrolysis compared to freshwater splitting and summarizes the current effective strategies. It provides insights for the rational design of high-performance anodes and proposes a perspective on the fabrication of high-performance anodes for direct seawater electrolysis.

SMALL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction

Minghui Ning et al.

Summary: Electrochemical reconstruction was used to synthesize bifunctional catalysts Fe-0.01-Ni&Ni0.2Mo0.8N and Fe-0.01&Mo-NiO with state-of-the-art HER and OER performance. The electrolyzer based on these catalysts exhibited record-high performance for seawater electrolysis and good durability under harsh industrial conditions.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Physical

Ultrathin Silicon Oxide Overlayers Enable Selective Oxygen Evolution from Acidic and Unbuffered pH-Neutral Seawater

Amar A. Bhardwaj et al.

Summary: The study demonstrates that ultrathin silicon oxide (SiOx) overlayers on model platinum anodes effectively suppress chlorine evolution reaction (CER) in the presence of chloride ions, while still allowing oxygen evolution reaction (OER) to occur.

ACS CATALYSIS (2021)

Article Multidisciplinary Sciences

A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution

Qiangmin Yu et al.

Summary: The study presents a mechanically stable monolith electrocatalyst that achieves superior hydrogen evolution at large current densities.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Design of a Multilayered Oxygen-Evolution Electrode with High Catalytic Activity and Corrosion Resistance for Saline Water Splitting

Jihong Li et al.

Summary: This study reported the design of a multilayered oxygen-evolution electrode synthesized through direct thermal boronization to meet the requirements of seawater electrolysis. The electrode consists of an oxidized NiFeBx alloy layer, a NiFeBx alloy interlayer, and a NiFe alloy substrate, which are conductive to the generation and stabilization of the catalytic active phase gamma-(Ni,Fe)OOH.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Physical

Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation

Jianxin Kang et al.

Summary: Monolayer materials offer an extra degree of freedom to modulate electronic structures and catalytic performances, promoting dynamic active site generation for the oxygen evolution reaction at lower potentials. Lattice doping with cobalt tunes the electronic structure and reduces overpotential, while in situ experiments reveal valence state oscillation in NiCo hydroxides as a fundamental mechanism for active site generation.

NATURE CATALYSIS (2021)

Article Chemistry, Physical

In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation

Chao Lin et al.

Summary: The use of Ru/MnO2 electrocatalyst has shown high activity and outstanding stability for the oxygen evolution reaction, confirming a mechanism involving only *O and *OH intermediates, with excellent overall performance.

NATURE CATALYSIS (2021)

Article Chemistry, Multidisciplinary

Dual-Doping and Synergism toward High-Performance Seawater Electrolysis

Jinfa Chang et al.

Summary: Direct seawater electrolysis for hydrogen production is economically appealing yet technically challenging. The iron and phosphor dual-doped nickel selenide nanoporous films were designed as bifunctional catalysts to improve efficiency, selectivity, and stability by enhancing the oxygen evolution reaction selectivity, preventing selenide dissolution, and stimulating active centers for the reaction. The experimental and theoretical analyses provide insights into the roles of dual-dopants in boosting seawater electrolysis, resulting in achieving high current density with OER selectivity and long-term stability.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Nickel-Based Electrodes

Tengfei Ma et al.

Summary: The addition of sulfate in the electrolyte can effectively retard the corrosion of chloride ions to the anode, greatly improving corrosion resistance and prolonging operating stability of nickel foam. The theoretical simulations and in situ experiments demonstrate that sulfate anions can form a negative charge layer on the anode surface to repulse chloride ions by electrostatic repulsion.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Sodium-Decorated Amorphous/Crystalline RuO2 with Rich Oxygen Vacancies: A Robust pH-Universal Oxygen Evolution Electrocatalyst

Lijie Zhang et al.

Summary: The study developed sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies as a pH-universal OER electrocatalyst, showing remarkable acid resistance and high catalytic stability. The introduction of Na dopant and oxygen vacancy in RuO2 was found to lower the energy barrier for OER by weakening the adsorption strength of the OER intermediates.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

The pH of Aqueous NaOH/KOH Solutions: A Critical and Non-trivial Parameter for Electrocatalysis

J. Niklas Hausmann et al.

ACS ENERGY LETTERS (2021)

Editorial Material Chemistry, Physical

Water electrolysis: Direct from the sea or not to be?

Pau Farras et al.

Summary: Researchers conducted a quantitative analysis to assess the economic feasibility of direct seawater electrolysis as a sustainable energy source.

JOULE (2021)

Review Chemistry, Multidisciplinary

Seawater electrolysis for hydrogen production: a solution looking for a problem?

M. A. Khan et al.

Summary: As the price of renewable electricity drops, water electrolysis for hydrogen production is being considered for decarbonization. However, there is currently limited economic and environmental incentive for further research and development in direct seawater electrolysis technology.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Is direct seawater splitting economically meaningful?

J. Niklas Hausmann et al.

Summary: Electrocatalytic water splitting is essential for green fuel production in a sustainable energy economy, with recent studies focusing on direct seawater splitting. However, the challenges and drawbacks of direct seawater splitting compared to conventional water splitting show that the former may not have significant advantages in terms of energy requirements and costs.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Physical

Seawater electrocatalysis: activity and selectivity

Sakila Khatun et al.

Summary: Seawater is considered a major hydrogen reservoir, but the presence of multielements and interference in electrochemistry, particularly chlorine chemistry, make electrocatalytic water splitting challenging. To achieve sustainable seawater electrolysis, focus should not only on electrocatalyst activity but also on selective oxygen evolution reaction to suppress corrosive chlorine chemistry.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Review Chemistry, Physical

Seawater electrocatalysis: activity and selectivity

Sakila Khatun et al.

Summary: Seawater is considered a major hydrogen reservoir, but the presence of multiple elements and interference in electrochemistry, especially chlorine chemistry, make seawater electrolysis challenging. To make seawater electrolysis sustainable, efficient oxygen evolution reaction and suppression of corrosive chlorine chemistry by electrocatalysts are highly desirable.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Multidisciplinary

Deciphering Iron-Dependent Activity in Oxygen Evolution Catalyzed by Nickel-Iron Layered Double Hydroxide

Seunghwa Lee et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Energy & Fuels

Electrolysis of low-grade and saline surface water

Wenming Tong et al.

NATURE ENERGY (2020)

Review Chemistry, Physical

Membrane Electrolyzers for Impure-Water Splitting

Grace A. Lindquist et al.

JOULE (2020)

Article Multidisciplinary Sciences

Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels

Yun Kuang et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2019)

Article Chemistry, Multidisciplinary

Sustainable Hydrogen Production from Offshore Marine Renewable Farms: Techno-Energetic Insight on Seawater Electrolysis Technologies

Rafael d'Amore-Domenech et al.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2019)

Article Chemistry, Physical

Direct Electrolytic Splitting of Seawater: Opportunities and Challenges

Soeren Dresp et al.

ACS ENERGY LETTERS (2019)

Article Chemistry, Multidisciplinary

Water splitting by electrolysis at high current densities under 1.6 volts

Haiqing Zhou et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Multidisciplinary

MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution

Johannes G. Vos et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Article Multidisciplinary Sciences

Unmasking chloride attack on the passive film of metals

B. Zhang et al.

NATURE COMMUNICATIONS (2018)

Article Materials Science, Multidisciplinary

Effect of SO42- on the corrosion of 316L stainless steel in molten FLiNaK salt

Jie Qiu et al.

CORROSION SCIENCE (2018)

Article Chemistry, Multidisciplinary

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

Charles C. L. McCrory et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Multidisciplinary Sciences

Iron corrosion by novel anaerobic microorganisms

HT Dinh et al.

NATURE (2004)

Article Multidisciplinary Sciences

Sustainable hydrogen production

JA Turner

SCIENCE (2004)

Article Multidisciplinary Sciences

Alternative energy technologies

MS Dresselhaus et al.

NATURE (2001)