4.8 Article

Exciton polariton interactions in Van der Waals superlattices at room temperature

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36912-3

Keywords

-

Ask authors/readers for more resources

Monolayer transition-metal dichalcogenide (TMD) materials have unique properties and promising applications in optoelectronic devices. By vertically stacking TMD materials, researchers can control the electronic and optical properties. The integration of TMD heterostructures in planar microcavities is important for controlling light-matter interactions and forming robust polaritons. The authors demonstrate the systematic control of coupling strength by embedding multiple WS2 monolayers in a planar microcavity and observe the presence of long-living dark excitations.
Monolayer transition-metal dichalcogenide (TMD) materials have attracted a great attention because of their unique properties and promising applications in integrated optoelectronic devices. Being layered materials, they can be stacked vertically to fabricate artificial van der Waals lattices, which offer unique opportunities to tailor the electronic and optical properties. The integration of TMD heterostructures in planar microcavities working in strong coupling regime is particularly important to control the light-matter interactions and form robust polaritons, highly sought for room temperature applications. Here, we demonstrate the systematic control of the coupling-strength by embedding multiple WS2 monolayers in a planar microcavity. The vacuum Rabi splitting is enhanced from 36meV for one monolayer up to 72meV for the four-monolayer microcavity. In addition, carrying out time-resolved pump-probe experiments at room temperature we demonstrate the nature of polariton interactions which are dominated by phase space filling effects. Furthermore, we also observe the presence of long-living dark excitations in the multiple monolayer superlattices. Our results pave the way for the realization of polaritonic devices based on planar microcavities embedding multiple monolayers and could potentially lead the way for future devices towards the exploitation of interaction-driven phenomena at room temperature. The authors embed a multiple quantum-well WS2 heterostructure in a planar microcavity and show the systematic control of the normal mode coupling-strength. They find a strong enhancement of the characteristic time scale, which they attribute to long-lived dark excitations emerging in the structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available