4.8 Article

Scarless wound healing programmed by core-shell microneedles

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39129-6

Keywords

-

Ask authors/readers for more resources

The authors developed a core-shell structured microneedle array patch with programmed functions to dynamically modulate the wound immune microenvironment according to different healing phases. This patch promotes scarless wound repair and inhibits the formation of hypertrophic scars.
Effective reprogramming of chronic wound healing remains challenging due to the limited drug delivery efficacy hindered by physiological barriers, as well as the inappropriate dosing timing in distinct healing stages. Here, the authors report a core-shell structured microneedle array patch with programmed functions which dynamically modulates the wound immune microenvironment according to the varied healing phases Effective reprogramming of chronic wound healing remains challenging due to the limited drug delivery efficacy hindered by physiological barriers, as well as the inappropriate dosing timing in distinct healing stages. Herein, a core-shell structured microneedle array patch with programmed functions (PF-MNs) is designed to dynamically modulate the wound immune microenvironment according to the varied healing phases. Specifically, PF-MNs combat multidrug-resistant bacterial biofilm at the early stage via generating reactive oxygen species (ROS) under laser irradiation. Subsequently, the ROS-sensitive MN shell gradually degrades to expose the MN core component, which neutralizes various inflammatory factors and promotes the phase transition from inflammation to proliferation. In addition, the released verteporfin inhibits scar formation by blocking Engrailed-1 (En1) activation in fibroblasts. Our experiments demonstrate that PF-MNs promote scarless wound repair in mouse models of both acute and chronic wounds, and inhibit the formation of hypertrophic scar in rabbit ear models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available