4.7 Article

Axial compressive behaviour of thin-walled composite columns comprise high-strength cold-formed steel and PE-ECC

Journal

THIN-WALLED STRUCTURES
Volume 184, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2022.110471

Keywords

Axial compression; Thin-walled; Composite columns; High-strength; CFS; PE-ECC

Ask authors/readers for more resources

This paper presents a new type of thin-walled composite columns made of high-strength cold-formed steel (CFS) open sections and thin layers of engineered cementitious composites (ECC). The axial behavior of the composite CFS/ECC columns under concentric loads was experimentally investigated. The results showed that the composite columns had significantly enhanced axial compressive capacity, ductility indices, and compressive toughness compared to the bare CFS columns. Strength prediction equations were also developed based on experimental observations.
A new form of thin-walled composite columns, made of high-strength cold-formed steel (CFS) open sections and thin layers of engineered cementitious composites (ECC), is presented in this paper. The axial behaviour of columns with slenderness ratios (l(e)/r) ranging between 10.08 and 13.86 under concentric loads were experimentally investigated. Twelve column specimens were divided into four groups of bare CFS columns, plain ECC columns, composite columns with SupaCee sections, and composite columns with Lipped-Cee sections. A specific ECC mixture with three PE-fibre contents: 0.75%, 1.75%, and 2.25% by mix volume, was placed in the tested columns in two thin thicknesses of 16.0 mm and 26.0 mm. Additionally, a high-strength concrete (HSC) mixture was utilised in two test columns for comparison with ECC. The results revealed that the composite CFS/ECC columns exhibited enhanced axial compressive capacities up to 2.79 times that of the bare CFS columns. The ductility indices and compressive toughness of the composite CFS/ECC columns were improved to 1.56 and 3.85 times those of the bare CFS columns, respectively. Strength prediction equations were developed based on the experimental observations to estimate the axial compressive capacity of composite CFS/ECC columns susceptible to local buckling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available