4.7 Article

Integrated label-free erbium-doped fiber laser biosensing system for detection of single cell Staphylococcus aureus

Journal

TALANTA
Volume 257, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2023.124385

Keywords

Fiber laser biosensor; Fiber interferometer; Foodborne pathogen; Staphylococcus aureus sensor

Ask authors/readers for more resources

A high quality factor (Q-factor) optical fiber interferometer based biosensing platform, combining single mode-core-only-single mode fiber (SCS) and multimode interference effect, is developed for ultra-high sensitivity biosensing. This biosensor is capable of effectively detecting concentrations of Staphylococcus aureus from 10 to 105 CFU/mL, with good sensitivity, stability, reproducibility and specificity, showing great potentials in diagnostics.
A critical challenge to realize ultra-high sensitivity with optical fiber interferometers for label free biosensing is to achieve high quality factors (Q-factor) in liquid. In this work a high Q-factor of 105, which significantly improves the detection resolution is described based on a structure of single mode-core-only-single mode fiber (SCS) with its multimode (or Mach-Zehnder) interference effect as a filter that is integrated into an erbium-doped fiber laser (EDFL) system for excitation. In the case study, the section of core-only fiber is functionalized with porcine immunoglobulin G (IgG) antibodies, which could selectively bind to bacterial pathogen of Staphylococcus aureus (S. aureus). The developed microfiber-based biosensing platform called SCS-based EDFL biosensors can effectively detect concentrations of S. aureus from 10 to 105 CFU/mL, with a responsivity of 0.426 nm wave-length shift in the measured spectrum for S. aureus concentration of 10 CFU/mL. The limit of detection (LoD) is estimated as 7.3 CFU/mL based on the measurement of S. aureus with minimum concentration of 10 CFU/mL. In addition, when a lower concentration of 1 CFU/mL is applied to the biosensor, a wavelength shift of 0.12 nm is observed in 10% of samples (1/10), indicating actual LoD of 1 CFU/mL for the proposed biosensor. Attributed to its good sensitivity, stability, reproducibility and specificity, the proposed EDFL based biosensing platform has great potentials for diagnostics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available