4.7 Article

Design of hydroxyl-functionalized nanoporous organic polymer with tunable hydrophilic-hydrophobic surface for solid phase extraction of neonicotinoid insecticides

Journal

TALANTA
Volume 258, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2023.124441

Keywords

Nanoporous organic polymers; Luteolin; Solid phase extraction; Neonicotinoid insecticides; Water; Edible fungi

Ask authors/readers for more resources

Four novel hydroxyl-functionalized nanoporous organic frameworks (OH-NOP1, OH-NOP2, OH-NOP3 and OH-NOP4) were designed and fabricated for efficient adsorption of neonicotinoids. Among them, OH-NOP3 exhibited the highest affinity and adsorption performance. An effective method for extraction and preconcentration of neonicotinoids using OH-NOP3 as sorbent was developed.
As being widely used insecticides, neonicotinoid residues are toxic and harmful to human health and aquatic ecosystems. Thus, the sensitive monitoring of neonicotinoids in water and food samples is highly desirable to reduce their risks to humans. Herein, four novel hydroxyl-functionalized nanoporous organic frameworks (OH-NOP1, OH-NOP2, OH-NOP3 and OH-NOP4) with tunable hydrophilic-hydrophobic surface have been designed and fabricated for the first time by employing luteolin as monomer and 4,4 '-bis(chloromethyl)-1,1 '- biphenyl as crosslinker at the molar ratio of 3:1, 1:1, 1:3 and 1:6, respectively. When the molar ratio of luteolin to crosslinker was 1:3, OH-NOP3 was obtained and it presented the highest affinity with excellent adsorption performance towards the studied neonicotinoids. The adsorption mechanism was proposed to be the strong hydrogen bond, polar interaction, Lewis acid-base interaction and pore adsorption between OH-NOP3 and neonicotinoids. Then, utilizing OH-NOP3 as sorbent for solid phase extraction cartridges, an effective method for extraction and preconcentration of neonicotinoids followed by high performance liquid chromatography analysis has been developed for quantitative detection of neonicotinoids from water and edible fungi. The method pro-vided good linearity over the range of 0.06-100.0 ng mL-1 for lake water, 1.5-100.0 ng g-1 for pleurotus eryngii and sea-shroom. Low detection limit (at the signal to noise ratio of 3) was achieved in the range of 0.02-0.08 ng mL-1 for water, 0.50-0.60 ng g-1 for pleurotus eryngii and 0.50-0.80 ng g-1 for sea-shroom, while the limit of quantification was 0.06-0.25 ng mL- 1, 1.50-1.80 ng g-1 and 1.50-2.50 ng g-1, respectively. Satisfactory method recoveries (85.1-112%) were obtained, with relative standard deviations below 8.2%. This study offered a new strategy for designing efficient sorbents to adsorb or remove organic pollutants based on the structure and properties of substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available