4.5 Article

Effective circuit modelling and experimental realization of an ultra-compact self-rectifier flux pump

Journal

SUPERCONDUCTOR SCIENCE & TECHNOLOGY
Volume 36, Issue 6, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-6668/accd9c

Keywords

flux pumps; self-rectifier; effective circuit modelling; superconducting power electronics; wireless charging; HTS

Ask authors/readers for more resources

This paper presents experimental and modelling results of an ultra-compact self-rectifier flux pump (FP) energizing a superconducting coil. The experiments and modeling together show the importance of dc-flux offsets in the transformer core on the final achievable current through the coil. The miniaturization possible for this class of FP and their minimal heat-leak into the cryogenic environment from thermal conduction make them attractive for applications with demanding size, weight and power limitations.
This paper presents experimental and modelling results of an ultra-compact self-rectifier flux pump (FP) energizing a superconducting coil. The device fits inside a volume of 65x65x50 mm and generates up to 320 A dc through the coil and a peak output voltage up to 60 mV. We also develop and present a full electromagnetic effective circuit model of the FP and compare its predictions to the experimental results. We show that our model can reproduce accurately the charging of the load coil and that it reproduces the systematic dependence of the maximum load coil current on the input current waveform. The experiments and modelling together show also the importance of dc-flux offsets in the transformer core on the final achievable current through the coil. The miniaturization possible for this class of FP and their minimal heat-leak into the cryogenic environment from thermal conduction make them attractive for applications with demanding size, weight and power limitations. Our effective circuit model is a useful tool in the understanding, design and optimization of such FPs which will accelerate their progression from research devices to their application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available