4.7 Article

Sympathetic Nervous Hyperactivity Impairs Microcirculation Leading to Early Brain Injury After Subarachnoid Hemorrhage

Journal

STROKE
Volume 54, Issue 6, Pages 1645-1655

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/STROKEAHA.123.042799

Keywords

brain; ganglionectomy; hemorrhage; middle cerebral artery; perfusion

Ask authors/readers for more resources

This study investigated the role of cerebral circulation in the acute phase following SAH using patient data and a mouse SAH model, and evaluated its regulation via the sympathetic nervous system. The results showed that cerebral circulation time was prolonged in the acute phase of SAH, especially in patients with electrocardiographic changes. In the mouse study, sympathetic hyperactivity was found to impair cerebral microcirculation and contribute to brain edema development in the acute phase following SAH.
Background:Although early brain injury (EBI) is recognized as a critical step following subarachnoid hemorrhage (SAH), its pathophysiology and underlying mechanisms remain poorly understood. Herein, we investigated the role of cerebral circulation in the acute phase using patient data and a mouse SAH model and evaluated its regulation via the sympathetic nervous system. Methods:The cerebral circulation time and neurological outcomes in the human body were retrospectively examined in 34 SAH cases with ruptured anterior circulation aneurysms and 85 cases with unruptured anterior circulation cerebral aneurysms at Kanazawa University Hospital from January 2016 to December 2021. In a mouse study, a SAH model was created via endovascular perforation, and India-ink angiography was performed over time. Additionally, bilateral superior cervical ganglionectomy was performed immediately before surgery, and neurological scores and brain water content were evaluated after SAH. Results:Cerebral circulation time was prolonged in the acute phase of SAH compared with that in the unruptured cerebral aneurysm group, especially in those with electrocardiographic changes. Furthermore, it was more prolonged in the poor prognosis group (modified Rankin Scale scores 3-6) than in the good prognosis group (modified Rankin Scale scores 0-2) at discharge. In mice, cerebral perfusion was significantly reduced at 1 and 3 hours after SAH and recovered at 6 hours. superior cervical ganglionectomy improved cerebral perfusion without altering the diameter of the middle cerebral artery at 1 hour and improved neurological outcomes at 48 hours after SAH. Consistently, brain edema, quantified by brain water content, was improved by superior cervical ganglionectomy 24 hours after SAH. Conclusions:Sympathetic hyperactivity may play a critical role in the development of EBI by impairing cerebral microcirculation and edema in the acute phase following SAH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available