4.7 Article

Quantitative analysis of low content polymorphic impurities in canagliflozin tablets by PXRD, NIR, ATR-FITR and Raman solid-state analysis techniques combined with stoichiometry

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2023.122458

Keywords

Canagliflozin; Polymorphism; Quantitative; PXRD; NIR; ATR-FTIR; Raman

Categories

Ask authors/readers for more resources

This study aimed to quantitatively analyze the low content of CFZ or Mono-CFZ in tablets using PXRD, NIR, ATR-FTIR, and Raman, and establish PLSR calibration models. NIR was found to be the most suitable method for the quantitative analysis of CFZ or Mono-CFZ in tablets.
Canagliflozin (CFZ) was a commercially new class of anti-diabetic drug, which had various anhydrate crystal forms and two hydrate crystal forms (Canagliflozin hemihydrate (Hemi-CFZ) and Canagliflozin monohydrate (Mono-CFZ) crystal form). Commercially available CFZ tablets' active pharmaceutical ingredient (API) was Hemi-CFZ, which was easy conversion to CFZ or Mono-CFZ under the influence of temperature, pressure, hu-midity and other factors in tablets processing, storage, and transportation, thus affected bioavailability and ef-ficacy of tablets. Therefore, quantitative analysis low content of CFZ and Mono-CFZ in tablets was essential to control tablets' quality. The main objective of this study was to examine the feasibility of Powder X-ray Diffraction (PXRD), Near Infrared Spectroscopy (NIR), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Raman for quantitative analysis the low content of CFZ or Mono-CFZ in ternarymixtures. PLSR calibration models for low content of CFZ and Mono-CFZ were established by the solid analysis techniques of PXRD, NIR, ATR-FTIR and Raman combined with various pretreatments (such as Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV), Savitzky-Golay First Derivative (SG1st), Savitzky-Golay Second Derivative (SG2nd) and Wavelet Transform (WT)), and the correction models were verified. However, compared with PXRD, ATR-FTIR and Raman, NIR due to its water sensitivity was the most suitable for the quantitative analysis low content of CFZ or Mono-CFZ in tablets. Partial Least Squares Regression (PLSR) model for quantitative analysis low content of CFZ in tablets was as follow: Y = 0.0480 + 0.9928 X, R2 = 0.9986, LOD = 0.1596 %, LOQ = 0.4838 %, SG1st + WT pretreated. And that of Mono-CFZ were Y = 0.0050 + 0.9996 X, R2 = 0.9996, LOD = 0.0164 %, LOQ = 0.0498 %, MSC + WT pretreated and Y = 0.0051 + 0.9996 X, R2 = 0.9996, LOD = 0.0167 %, LOQ = 0.0505 %, SNV + WT pretreated, respectively. That can be used for quanti-tative analysis of impurity crystal content in drug production to ensure drug quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available