4.8 Article

Scalable Fabrication of Superhydrophobic Coating with Rough Coral Reef-Like Structures for Efficient Self-Cleaning and Oil-Water Separation: An Experimental and Molecular Dynamics Simulation Study

Journal

SMALL
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202207118

Keywords

coral reef-like structures; molecular dynamics simulations; oil-water separation; scalable fabrication; superhydrophobic

Ask authors/readers for more resources

This work presents a scalable fabrication method for weather-resistant superhydrophobic coatings with multiscale rough coral reef-like structures. The sprayed superhydrophobic coating exhibits excellent self-cleaning properties, weather resistance, and environmental adaptability. The study also deepens the understanding of the anti-wetting mechanism of superhydrophobic surfaces, paving the way for the rational design of superhydrophobic materials and their large-scale applications.
Superhydrophobic coating has a great application prospect in self-cleaning and oil-water separation but remains challenging for large-scale preparation of robust and weather-resistant superhydrophobic coatings via facile approaches. Herein, this work reports a scalable fabrication of weather-resistant superhydrophobic coating with multiscale rough coral reef-like structures by spraying the suspension containing superhydrophobic silica nanoparticles and industrial coating varnish on various substrates. The coral reef-like structures effectively improves the surface roughness and abrasion resistance. Rapid aging experiments (3000 h) and the outdoor building project application (3000 m(2)) show that the sprayed superhydrophobic coating exhibits excellent self-cleaning properties, weather resistance, and environmental adaptability. Moreover, the combined silica-coating varnish-polyurethane (CSCP) superhydrophobic sponge exhibits exceptional oil-water separation capabilities, selectively absorbing the oils from water up to 39 times of its own weight. Furthermore, the molecular dynamics (MD) simulation reveals that the combined effect of higher surface roughness, smaller diffusion coefficient of water molecules, and weaker electrostatic interactions between water and the surface jointly determines the superhydrophobicity of the prepared coating. This work deepens the understanding of the anti-wetting mechanism of superhydrophobic surfaces from the perspective of energetic and kinetic properties, thereby paving the way for the rational design of superhydrophobic materials and their large-scale applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available