4.8 Article

Physicochemical Properties and Route of Systemic Delivery Control the In Vivo Dynamics and Breakdown of Radiolabeled Gold Nanostars

Journal

SMALL
Volume 19, Issue 29, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202204293

Keywords

exocytosis; gold nanostars; in vivo breakdown; long-term biodistribution; Martini coarse-grained simulations; positron emission tomography (PET); protein corona

Ask authors/readers for more resources

This study demonstrates the unexpected breakdown of functionalized gold nanostars (F-AuNSs) conjugated with antibodies and Cu-64 radiolabels in vivo and in artificial lysosomal fluid ex vivo. The short-term biodistribution of F-AuNSs is influenced by the route of systemic delivery, while the long-term fate is controlled by the tissue type in vivo. In vitro and in vivo studies show that F-AuNSs dynamics are governed by their physicochemical properties and route of delivery.
The in vivo dynamics of nanoparticles requires a mechanistic understanding of multiple factors. Here, for the first time, the surprising breakdown of functionalized gold nanostars (F-AuNSs) conjugated with antibodies and Cu-64 radiolabels in vivo and in artificial lysosomal fluid ex vivo, is shown. The short-term biodistribution of F-AuNSs is driven by the route of systemic delivery (intravenous vs intraperitoneal) and long-term fate is controlled by the tissue type in vivo. In vitro studies including endocytosis pathways, intracellular trafficking, and opsonization, are combined with in vivo studies integrating a milieu of spectroscopy and microcopy techniques that show F-AuNSs dynamics is driven by their physicochemical properties and route of delivery. F-AuNSs break down into sub-20 nm broken nanoparticles as early as 7 days postinjection. Martini coarse-grained simulations are performed to support the in vivo findings. Simulations suggest that shape, size, and charge of the broken nanoparticles, and composition of the lipid membrane depicting various tissues govern the interaction of the nanoparticles with the membrane, and the rate of translocation across the membrane to ultimately enable tissue clearance. The fundamental study addresses critical gaps in the knowledge regarding the fate of nanoparticles in vivo that remain a bottleneck in their clinical translation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available