4.8 Article

Cobalt Ferrite-Gossypol Coordination Nanoagents with High Photothermal Conversion Efficiency Sensitizing Chemotherapy against Bcl-2 to Induce Tumor Apoptosis

Journal

SMALL
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202300104

Keywords

cobalt ferrite; glyceryl monooleate; gossypol; photothermal therapy; tumor chemotherapy

Ask authors/readers for more resources

Encasing gossypol in glyceryl monooleate (GMO) and making it coordinate cobalt ferrite can improve its photothermal conversion efficiency and help it enter tumor cells, inducing tumor apoptosis and enhancing chemotherapy.
Gossypol is a chemotherapeutic drug that can inhibit the anti-apoptotic protein Bcl-2, but the existing gossypol-related nanocarriers cannot well solve the problem of chemotherapy resistance. Based on the observation that gossypol becomes black upon Fe3+ coordination, it is hypothesized that encasing gossypol in glyceryl monooleate (GMO) and making it coordinate cobalt ferrite will not only improve its photothermal conversion efficiency (PCE) but also help it enter tumor cells. As the drug loading content and drug encapsulation efficiency of gossypol are 10.67% (w/w) and 96.20%, the PCE of cobalt ferrite rises from 14.71% to 36.00%. The synergistic therapeutic effect finally induces tumor apoptosis with a tumor inhibition rate of 96.56%, which is 2.99 and 1.47 times higher than chemotherapy or photothermal therapy (PTT) alone. PTT generated by the GMO nanocarriers under the irradiation of 808 nm laser can weaken tumor hypoxia, thereby assisting gossypol to inhibit Bcl-2. In addition, the efficacy of nanocarriers is also evaluated through T-2-weighted magnetic resonance imaging. Observations of gossypol-induced apoptosis in tissue slices provide definitive proof of chemotherapy sensitization, indicating that such coordination nanocarriers can be used as an effective preclinical agent to enhance chemotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available