4.7 Article

A novel linear displacement isothermal amplification with strand displacement probes (LDIA-SD) in a pocket-size device for point-of-care testing of infectious diseases

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 379, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2022.133244

Keywords

Nucleic Acid Amplification; Isothermal amplification; Point -of -care testing (POCT); Linear displacement isothermal amplification; (LDIA); Infectious diseases

Ask authors/readers for more resources

A novel linear displacement isothermal amplification (LDIA) method was developed for specific gene detection, which has advantages of simple primer design, high sensitivity and specificity, and applicability for point-of-care testing (POCT).
Nucleic acid amplification is crucial for disease diagnosis, especially lethal infectious diseases such as COVID-19. Compared with PCR, isothermal amplification methods are advantageous for point-of-care testing (POCT). However, complicated primer design limits their application in detecting some short targets or sequences with abnormal GC content. Herein, we developed a novel linear displacement isothermal amplification (LDIA) method using two pairs of conventional primers and Bacillus stearothermophilus (Bst) DNA polymerase, and reactions could be accelerated by adding an extra primer. Pseudorabies virus gE (high GC content) and Salmonella fimW (low GC content) genes were used to evaluate the LDIA assay. Using strand displacement (SD) probes, a LDIA-SD method was developed to realize probe-based specific detection. Additionally, we incorporated a nucleic acid -free extraction step and a pocket-sized device to realize POCT applications of the LDIA-SD method. The LDIA-SD method has advantages including facile primer design, high sensitivity and specificity, and applicability for POCT, especially for amplification of complex sequences and detection of infectious diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available