4.6 Article

Margined Horn-Shaped Air Chamber for Body-Conduction Microphone

Journal

SENSORS
Volume 23, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/s23094565

Keywords

wearable device; collar; scratching sound; body-conducted sound; air chamber

Ask authors/readers for more resources

Quantitative monitoring of scratching intensity in dogs has become necessary, leading to the development of a body-conduction microphone collar. However, the design of one of its components, the air chamber, has not been appropriately done. This study compared the amplification ratios of air chambers with different shapes through numerical analysis and experiments, finding that the horn-shaped air chamber achieved the highest amplification performance.
The sound amplification ratios of sealed air chambers with different shapes were quantitatively compared to design a body-conduction microphone to measure animal scratching sounds. Recently, quantitative monitoring of scratching intensity in dogs has been required. We have already developed a collar with a body-conduction microphone to measure body-conducted scratching sounds. However, the air chamber, one of the components of the body-conduction microphone, has not been appropriately designed. This study compared the amplification ratios of air chambers with different shapes through numerical analysis and experiments. According to the results, the horn-shaped air chamber achieved the highest amplification performance, at least for sound frequencies below 3 kHz. The simulated amplification ratio of the horn-shaped air chamber with a 1 mm height and a 15 mm diameter was 52.5 dB. The deformation of the bottom of the air chamber affected the amplification ratio. Adjusting the margin of the margined horn shape could maintain its amplification ratio at any pressing force. The simulated and experimental amplification ratios of the margined horn-shaped air chamber were 53.4 dB and 19.4 dB, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available