4.6 Article

Dual-Sensing Piezoresponsive Foam for Dynamic and Static Loading

Journal

SENSORS
Volume 23, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/s23073719

Keywords

nanocomposite; piezoelectric; piezoresistive; multifunctional

Ask authors/readers for more resources

This paper provides a detailed characterization of the voltage response vs frequency of deformation for polymeric foams embedded with nano-scale conductive particles. It also identifies a new sensing functionality, piezoresistive response, which greatly enhances the potential applications for the foam material.
Polymeric foams, embedded with nano-scale conductive particles, have previously been shown to display quasi-piezoelectric (QPE) properties; i.e., they produce a voltage in response to rapid deformation. This behavior has been utilized to sense impact and vibration in foam components, such as in sports padding and vibration-isolating pads. However, a detailed characterization of the sensing behavior has not been undertaken. Furthermore, the potential for sensing quasi-static deformation in the same material has not been explored. This paper provides new insights into these self-sensing foams by characterizing voltage response vs frequency of deformation. The correlation between temperature and voltage response is also quantified. Furthermore, a new sensing functionality is observed, in the form of a piezoresistive response to quasi-static deformation. The piezoresistive characteristics are quantified for both in-plane and through-thickness resistance configurations. The new functionality greatly enhances the potential applications for the foam, for example, as insoles that can characterize ground reaction force and pressure during dynamic and/or quasi-static circumstances, or as seat cushioning that can sense pressure and impact.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available