4.6 Article

Enhanced Optical Response of SnS/SnS2 Layered Heterostructure

Journal

SENSORS
Volume 23, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/s23104976

Keywords

heterostructure; photoresponsivity; chemical vapor deposition

Ask authors/readers for more resources

The SnS/SnS2 heterostructure was fabricated and characterized, showing significant enhancement in photoresponsivity and improved optical response speed. This research provides valuable insights into the design of high-performance photodetection devices.
The SnS/SnS2 heterostructure was fabricated by the chemical vapor deposition method. The crystal structure properties of SnS2 and SnS were characterized by X-ray diffraction (XRD) pattern, Raman spectroscopy, and field emission scanning electron microscopy (FESEM). The frequency dependence photoconductivity explores its carrier kinetic decay process. The SnS/SnS2 heterostructure shows that the ratio of short time constant decay process reaches 0.729 with a time constant of 4.3 x 10(-4) s. The power-dependent photoresponsivity investigates the mechanism of electron-hole pair recombination. The results indicate that the photoresponsivity of the SnS/SnS2 heterostructure has been increased to 7.31 x 10(-3) A/W, representing a significant enhancement of approximately 7 times that of the individual films. The results show the optical response speed has been improved by using the SnS/SnS2 heterostructure. These results indicate an application potential of the layered SnS/SnS2 heterostructure for photodetection. This research provides valuable insights into the preparation of the heterostructure composed of SnS and SnS2, and presents an approach for designing high-performance photodetection devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available