4.7 Article

Autaptic activity-induced synchronization transitions in Newman-Watts network of Hodgkin-Huxley neurons

Journal

CHAOS
Volume 25, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4918997

Keywords

-

Funding

  1. Natural Science Foundation of Shandong Province of China [ZR2012AM013]

Ask authors/readers for more resources

In this paper, we numerically study the effect of autapse on the synchronization of Newman-Watts small-world Hodgkin-Huxley neuron network. It is found that the neurons exhibit synchronization transitions as autaptic self-feedback delay is varied, and the phenomenon becomes strongest when autaptic self-feedback strength is optimal. This phenomenon also changes with the change of coupling strength and network randomness and become strongest when they are optimal. There are similar synchronization transitions for electrical and chemical autapse, but the synchronization transitions for chemical autapse occur more frequently and are stronger than those for electrical synapse. The underlying mechanisms are briefly discussed in quality. These results show that autaptic activity plays a subtle role in the synchronization of the neuronal network. These findings may find potential implications of autapse for the information processing and transmission in neural systems. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available