4.6 Review

Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis?

Journal

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY
Volume 155, Issue -, Pages 3-15

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.semcdb.2023.06.002

Keywords

-

Ask authors/readers for more resources

Smooth muscle cells, endothelial cells, and macrophages in blood vessels display remarkable heterogeneity, and their developmental origins may influence their plasticity. Unbiased single cell whole transcriptome analysis techniques are revolutionizing the understanding of cellular diversity and plasticity, providing insights for therapeutic research.
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available