4.6 Review

Perspectives on improving crop Rubisco by directed evolution

Journal

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY
Volume 155, Issue -, Pages 37-47

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.semcdb.2023.04.003

Keywords

Photosynthesis; Chloroplast transformation; Directed evolution; Chaperones; Synthetic biology; Chaperonin; Food security; Calvin cycle; CO2-fixation

Ask authors/readers for more resources

Rubisco is a key enzyme that facilitates the entry of CO2 into the biosphere, but its catalytic properties are slow and error-prone. More effective Rubisco variants have been discovered in certain algae, offering the potential to significantly improve crop productivity. However, incompatibilities in protein folding have hindered the transplantation of these variants into plants. Directed evolution is now being explored to enhance Rubisco catalysis.
Rubisco catalyses the entry of almost all CO2 into the biosphere and is often the rate-limiting step in plant photosynthesis and growth. Its notoriety as the most abundant protein on Earth stems from the slow and errorprone catalytic properties that require plants, cyanobacteria, algae and photosynthetic bacteria to produce it in high amounts. Efforts to improve the CO2-fixing properties of plant Rubisco has been spurred on by the discovery of more effective isoforms in some algae with the potential to significantly improve crop productivity. Incompatibilities between the protein folding machinery of leaf and algae chloroplasts have, so far, prevented efforts to transplant these more effective Rubisco variants into plants. There is therefore increasing interest in improving Rubisco catalysis by directed (laboratory) evolution. Here we review the advances being made in, and the ongoing challenges with, improving the solubility and/or carboxylation activity of differing non-plant Rubisco lineages. We provide perspectives on new opportunities for the directed evolution of crop Rubiscos and the existing plant transformation capabilities available to evaluate the extent to which Rubisco activity improvements can benefit agricultural productivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available