4.5 Article

Adhesion to laminin-1 and collagen IV induces the formation of Ca2+ microdomains that sensitize mouse T cells for activation

Journal

SCIENCE SIGNALING
Volume 16, Issue 790, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.abn9405

Keywords

-

Ask authors/readers for more resources

During immune response, T cells migrate into inflamed tissues by moving across the endothelium and extracellular matrix. Integrins facilitate T cell binding to endothelial cells and extracellular matrix proteins. Adhesion to ECM proteins triggers Ca2+ microdomains formation, increasing the sensitivity of T cells to activation.
During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP(3)Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available