4.7 Article

Histone modification landscape and the key significance of H3K27me3 in myocardial ischaemia/reperfusion injury

Journal

SCIENCE CHINA-LIFE SCIENCES
Volume 66, Issue 6, Pages 1264-1279

Publisher

SCIENCE PRESS
DOI: 10.1007/s11427-022-2257-9

Keywords

histone modification; myocardial ischemia; reperfusion; EZH2; angiogenesis

Categories

Ask authors/readers for more resources

Histone modifications play crucial roles in the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury. In this study, transcriptome and epigenome of histone modifications were integrated to characterize epigenetic signatures after I/R injury. Disease-specific histone mark alterations were mainly found in H3K27me3-, H3K27ac-, and H3K4me1-marked regions 24 and 48 h after I/R.
Histone modifications play crucial roles in the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury. However, a genome-wide map of histone modifications and the underlying epigenetic signatures in myocardial I/R injury have not been established. Here, we integrated transcriptome and epigenome of histone modifications to characterize epigenetic signatures after I/R injury. Disease-specific histone mark alterations were mainly found in H3K27me3-, H3K27ac-, and H3K4me1-marked regions 24 and 48 h after I/R. Genes differentially modified by H3K27ac, H3K4me1 and H3K27me3 were involved in immune response, heart conduction or contraction, cytoskeleton, and angiogenesis. H3K27me3 and its methyltransferase polycomb repressor complex 2 (PRC2) were upregulated in myocardial tissues after I/R. Upon selective inhibition of EZH2 (the catalytic core of PRC2), the mice manifest improved cardiac function, enhanced angiogenesis, and reduced fibrosis. Further investigations confirmed that EZH2 inhibition regulated H3K27me3 modification of multiple pro-angiogenic genes and ultimately enhanced angiogenic properties in vivo and in vitro. This study delineates a landscape of histone modifications in myocardial I/R injury, and identifies H3K27me3 as a key epigenetic modifier in I/R process. The inhibition of H3K27me3 and its methyltransferase might be a potential strategy for myocardial I/R injury intervention.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available