4.7 Review

Upper Ocean Biogeochemistry of the Oligotrophic North Pacific Subtropical Gyre: From Nutrient Sources to Carbon Export

Journal

REVIEWS OF GEOPHYSICS
Volume 61, Issue 3, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022RG000800

Keywords

biogeochemistry; subtropical gyres; oligotrophic ocean; euphotic zone; nutrients; export production; nutrient-depleted layer; nutrient-replete layer; North Pacific Subtropical Gyres

Ask authors/readers for more resources

Subtropical gyres cover a significant portion of the world's ocean and are typically considered as ocean deserts due to their permanent stratification, depleted surface nutrients, and low biological productivity. Despite advancements in understanding biogeochemistry, subtropical gyres remain understudied. This review focuses on the North Pacific Subtropical Gyre and compares it with other subtropical gyres. It highlights the spatial variability and its impact on community structure and export production. The review also identifies knowledge gaps and research challenges in these unique systems that warrant future studies.
Subtropical gyres cover 26%-29% of the world's surface ocean and are conventionally regarded as ocean deserts due to their permanent stratification, depleted surface nutrients, and low biological productivity. Despite tremendous advances over the past three decades, particularly through the Hawaii Ocean Time-series and the Bermuda Atlantic Time-series Study, which have revolutionized our understanding of the biogeochemistry in oligotrophic marine ecosystems, the gyres remain understudied. We review current understanding of upper ocean biogeochemistry in the North Pacific Subtropical Gyre, considering other subtropical gyres for comparison. We focus our synthesis on spatial variability, which shows larger than expected dynamic ranges of properties such as nutrient concentrations, rates of N-2 fixation, and biological production. This review provides new insights into how nutrient sources drive community structure and export in upper subtropical gyres. We examine the euphotic zone (EZ) in subtropical gyres as a two-layered vertically structured system: a nutrient-depleted layer above the top of the nutricline in the well-lit upper ocean and a nutrient-replete layer below in the dimly lit waters. These layers vary in nutrient supply and stoichiometries and physical forcing, promoting differences in community structure and food webs, with direct impacts on the magnitude and composition of export production. We evaluate long-term variations in key biogeochemical parameters in both of these EZ layers. Finally, we identify major knowledge gaps and research challenges in these vast and unique systems that offer opportunities for future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available