4.5 Article

Retrofittable plug-flow reactor for in situ high-temperature vibrating sample magnetometry with well-controlled gas atmospheres

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 94, Issue 6, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0113493

Keywords

-

Ask authors/readers for more resources

We have developed an in situ sample holder similar to a quartz-based plug-flow reactor for gas-controlled vibrating sample magnetometry (VSM) at ambient pressure and temperatures up to approximately 1000 degrees C. The results show that the holder allows control of gas composition and sample reduction/oxidation, with similar measurement sensitivity and improved repeatability compared to conventional sample cups. The in situ holder uses a closed gas tubing system to prevent contact between the active gas and the VSM and oven parts, and the gas can be collected for analysis and safe handling at the outlet.
We have developed an in situ sample-holder-akin to a quartz-based plug-flow reactor-for vibrating sample magnetometry (VSM) in gas-controlled environments at ambient pressure and temperatures up to similar to 1000 degrees C. The holder matches onto a specific type of vibrating sample magnetometer (Lake Shore model 7404-S), but the principles are applicable to other types of VSM. The holder has been tested on powder samples of Co particles on a MgAl2O4 support in both reducing and oxidizing atmospheres. The results show control of gas composition and sample reduction/oxidation. In comparison with conventional sample cups, the in situ holder shows a similar measurement sensitivity but a better repeatability due to the well-controlled gas atmosphere. Moreover, the in situ holder uses a closed gas tubing system such that the active gas only passes by the sample and it is not in contact with the VSM and oven parts. At the outlet, the gas can be collected for analysis and safe handling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available