4.8 Article

Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 178, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2023.113238

Keywords

MXene nanocomposites; Green synthesis; Defect engineering; Ionic liquid; Supercapacitors; Machine learning; Economic impact

Ask authors/readers for more resources

MXenes are a research hotspot in 2D materials with potential to revolutionize material technology in fields such as energy storage and drinking water desalination. However, the current synthesis methods are a bottleneck for their sustainable development. This review explores the use of green solvents in MXene synthesis and their impact on material properties. The aim is to raise awareness about the environmental impact of MXene synthesis and promote the development of environmentally friendly and efficient MXene derivatives for commercial energy applications.
MXenes are currently a research hotspot in the field of 2D materials, hinting to revolutionize material technology. Their layered architecture allows for molecular intercalation, defect engineering, and surface band gap functionalization, with applications as diverse as energy storage and drinking water desalination. Its structural and functional integrity has prompted the scientific community to investigate novel compositions in an effort to leverage electrochemical activity, mechanical robustness, flexibility and environmental stability. However, the current synthesis routes present a bottleneck in proposing MXenes as a sustainable material for the future. Therefore, by expanding the reach of synthetic chemistry towards efficient strategies for green production, we present the first comprehensive introspection of the use of green solvents and their impact on material properties during MXene synthesis. This review is an attempt to quantify the intriguing characteristics of MXene nanocomposites by embracing design tools like the 'iceberg model'. To further evaluate the performance of MXenes fabricated using green strategies (such as eutectic etching) we have made an attempt to critically compare them with conventional MXenes by examining surface characteristics, electrochemical analysis, charge transfer mechanisms etc. Conclusively, we aim to instigate concern about the environmental impact of MXene synthesis and instil a multidisciplinary approach to tailor environmentally benign, scalable and efficient MXene derivatives for commercial energy applications. The review provides an immersive account linking UN sustainable development goals with the industrial outlook of green MXenes, it highlights their impact on climate change, potential to build technically advanced economies, low cost production and range of applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available