4.6 Article

Nuclear radiation shielding performance of borosilicate glasses: Numerical simulations and theoretical analyses

Journal

RADIATION PHYSICS AND CHEMISTRY
Volume 204, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.radphyschem.2022.110676

Keywords

Borosilicate; Radiation shielding; FLUKA; GEANT4; MATLAB; Buildup factor

Ask authors/readers for more resources

The photon shielding performances of five different borosilicate-based glasses were investigated in this study. The photon attenuation features were evaluated with Monte Carlo simulation and theoretical evaluation tools, and the results showed that the addition of high-Z elements such as Ba in suitable amounts can improve the photon attenuation capability of the glasses. The gamma shielding characteristics of the analyzed samples were found to be associated with the density of the glass.
The photon shielding performances of five different borosilicate-based glasses were investigated in this study using the FLUKA, GEANT4 and MATLAB codes, as well as the XCOM program, at photon energies ranging from 0.03 to 15 MeV. In this context, dependencies of the photon attenuation features with the variation of the photon energy and the chemical compositions have been carefully evaluated with Monte Carlo simulation and theo-retical evaluation tools. The mass attenuation coefficient values and effective atomic numbers obtained for BaO-doped G5 glasses are found to be higher than those derived for G1-G4 samples. In other words, the Zeff results showed that high Z-elements such as Ba in a suitable amount should be inserted into the glass composition in order to improve the photon attenuation capability of the borosilicate glasses. The HVLs, TVLs, and MFPs of the studied borosilicate glasses are determined further, and the gamma shielding characteristics of the analyzed samples are found to be associated to the density of the glass, implying that high-density glass can be used for high-level attenuation performance. The exposure buildup factor (EBF) values have been further estimated via the G-P fitting approach. The results of such investigations, according to the work given, may be valuable in designing and fabricating new borosilicate-based glasses, which can then shield against potential radiation damage to environmental health.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available