4.6 Article

Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422

Journal

JOURNAL OF VIROLOGY
Volume 90, Issue 7, Pages 3745-3759

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.02397-15

Keywords

-

Categories

Funding

  1. FIRB MERIT [RBNE08NKH7_003]
  2. PON Ricerca e Competitivita [PON01_01602, PON01_02342, PON04a2_C SMART HEALTH]
  3. Rete integrata per le biotecnologie applicate a molecole ad attivita farmacologica-FarmaBio-Net
  4. progetto BERSAGLI-Bersagli, sonde e segnali in terapia diagnostica (Bando per la Realizzazione della Rete delle Biotecnologie Campane, Obiettivo Operativo 2.1 POR Campania)
  5. Medical Research Council, United Kingdom
  6. Medical Research Council [MC_UU_12014/2] Funding Source: researchfish
  7. MRC [MC_UU_12014/2] Funding Source: UKRI

Ask authors/readers for more resources

The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a beta-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180 degrees compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available