4.4 Article

Improving the X-Ray Energy Resolution of a Scientific CMOS Detector by Pixel-level Gain Correction

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/1538-3873/acbcf3

Keywords

-

Ask authors/readers for more resources

This study investigates the performance of a large-format sCMOS sensor at the level of individual pixels. By accurately correcting the gain of each pixel, the energy resolution can be significantly improved, which has potential applications in X-ray spectroscopic observations.
Scientific Complementary Metal Oxide Semiconductor (sCMOS) sensors are finding increasingly more applications in astronomical observations, thanks to their advantages over charge-coupled devices such as a higher readout frame rate, higher radiation tolerance, and higher working temperature. In this work, we investigate the performance at the individual pixel level of a large-format sCMOS sensor, GSENSE1516BSI, which has 4096 x 4096 pixels, each of 15 mu m in size. To achieve this, three areas on the sCMOS sensor, each consisting of 99 x 99 pixels, are chosen for the experiment. The readout noise, conversion gain and energy resolutions of the individual pixels in these areas are measured from a large number (more than 25,000) of X-ray events accumulated for each of the pixels through long time exposures. The energy resolution of these pixels can reach 140 eV at 6.4 keV at room temperature and shows a significant positive correlation with the readout noise. The accurate gain can also be derived individually for each of the pixels from its X-ray spectrum obtained. Variations of the gain values are found at a level of 0.56% statistically among the 30 thousand pixels in the areas studied. With the gain of each pixel determined accurately, a precise gain correction is performed pixel by pixel in these areas, in contrast to the standardized ensemble gain used in the conventional method. In this way, we could almost completely eliminate the degradation of energy resolutions caused by gain variations among pixels. As a result, the energy resolution at room temperature can be significantly improved to 124.6 eV at 4.5 keV and 140.7 eV at 6.4 keV. This pixel-by-pixel gain correction method can be applied to all kinds of CMOS sensors, and is expected to find interesting applications in X-ray spectroscopic observations in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available