4.8 Article

Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO2 chemistry

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2219692120

Keywords

solid electrolyte interphase; solvation shell; donor number; electrolyte engineering; Li-CO2 batteries

Ask authors/readers for more resources

The trend of converting CO2 into valuable chemicals is discussed in this article, highlighting the efficient approach of fixing CO2 as carbon or carbonates through Li-CO2 chemistry. The importance of anions/solvents in forming a robust solid electrolyte interphase (SEI) layer and the solvation structure is emphasized, with findings showing that selecting the appropriate solvent and ion pair ratio is crucial for improving electrolyte efficiency.
Transforming CO2 into valuable chemicals is an inevitable trend in our current society. Among the viable end-uses of CO2, fixing CO2 as carbon or carbonates via Li-CO2 chemistry could be an efficient approach, and promising achievements have been obtained in catalyst design in the past. Even so, the critical role of anions/ solvents in the formation of a robust solid electrolyte interphase (SEI) layer on cathodes and the solvation structure have never been investigated. Herein, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in two common solvents with various donor numbers (DN) have been introduced as ideal examples. The results indicate that the cells in dimethyl sulfoxide (DMSO)-based electrolytes with high DN possess a low proportion of solvent-separated ion pairs and contact ion pairs in electrolyte configuration, which are responsible for fast ion diffusion, high ionic conductivity, and small polarization. The 3 M DMSO cell delivered the lowest polarization of 1.3 V compared to all the tetraethylene glycol dimethyl ether (TEGDME)-based cells (about 1.7 V). In addition, the coordination of the O in the TFSI- anion to the central solvated Li+ ion was located at around 2 angstrom in the concentrated DMSO-based electrolytes, indicating that TFSI- anions could access the primary solvation sheath to form an LiF-rich SEI layer. This deeper understanding of the electrolyte solvent property for SEI formation and buried interface side reactions provides beneficial clues for future Li-CO2 battery development and electrolyte design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available