4.7 Article

Preparation of a 3D BN network structure by a salt-template-assisted method filled with epoxy resin to obtain high thermal conductivity nanocomposites

Journal

POLYMER COMPOSITES
Volume 44, Issue 6, Pages 3610-3621

Publisher

WILEY
DOI: 10.1002/pc.27348

Keywords

hexagonal boron nitride; insulation properties; thermal conductivity; thermal conductivity network

Ask authors/readers for more resources

It is crucial to improve the thermal management capability of polymeric materials while maintaining their electrical insulating properties. Constructing thermally conductive networks with three-dimensional structures inside polymers is an efficient way to build thermally conductive pathways. This work provides a new direction for the preparation of thermal management materials.
It is crucial to improve the thermal management capability of polymeric materials while maintaining their electrical insulating properties. Constructing thermally conductive networks with three-dimensional structures inside polymers is an efficient way to build thermally conductive pathways. A unique three-dimensional interconnected hexagonal boron nitride (h-BN) skeleton was prepared by sacrificing salt templates. The prepared three-dimensional skeleton exhibited a sponge-like structure. BN served as the main body of the thermally conductive skeleton, and polyvinylidene fluoride (PVDF) served as the binder between BN. It was subsequently supplemented with vacuum impregnation of epoxy resin to improve the thermal conductivity of the epoxy composites. The composite achieved a thermal conductivity of 1.245 W/(m center dot K) at a filler loading of 21 wt%, and equivalent to a thermal conductivity enhancement of 611.4% compared to the pure resin matrix. The prepared composites exhibit good thermal management capabilities and excellent insulation properties, showing great potential for electrical and electronic device applications. This work provides a new direction for the preparation of thermal management materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available