4.6 Article

A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region

Journal

PLOS ONE
Volume 18, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0285188

Keywords

-

Ask authors/readers for more resources

This study applies transfer learning to predict recurrence risk in NSCLC patients using data acquired during the screening phase. Experimental results show that the model analyzing CROP 20 images, which contain more peritumoral area, achieves the best performance in predicting NSCLC recurrence.
Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients at diagnosis could be essential to designate risk patients to more aggressive medical treatments. In this manuscript, we apply a transfer learning approach to predict recurrence in NSCLC patients, exploiting only data acquired during its screening phase. Particularly, we used a public radiogenomic dataset of NSCLC patients having a primary tumor CT image and clinical information. Starting from the CT slice containing the tumor with maximum area, we considered three different dilatation sizes to identify three Regions of Interest (ROIs): CROP (without dilation), CROP 10 and CROP 20. Then, from each ROI, we extracted radiomic features by means of different pre-trained CNNs. The latter have been combined with clinical information; thus, we trained a Support Vector Machine classifier to predict the NSCLC recurrence. The classification performances of the devised models were finally evaluated on both the hold-out training and hold-out test sets, in which the original sample has been previously divided. The experimental results showed that the model obtained analyzing CROP 20 images, which are the ROIs containing more peritumoral area, achieved the best performances on both the hold-out training set, with an AUC of 0.73, an Accuracy of 0.61, a Sensitivity of 0.63, and a Specificity of 0.60, and on the hold-out test set, with an AUC value of 0.83, an Accuracy value of 0.79, a Sensitivity value of 0.80, and a Specificity value of 0.78. The proposed model represents a promising procedure for early predicting recurrence risk in NSCLC patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available