4.6 Article

Using a novel fuzzy 3-inputs algorithms to control the active hydraulic stabilizer bar with the complex model of the vehicle nonlinear dynamics

Journal

PLOS ONE
Volume 18, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0282505

Keywords

-

Ask authors/readers for more resources

This article studies the vehicle rollover dynamics when using a hydraulic stabilizer bar. By establishing a complex dynamic model and controlling the operation of the hydraulic stabilizer bar with a fuzzy algorithm, the simulation results in the MATLAB-Simulink environment show that using an active stabilizer bar can significantly reduce the vehicle's roll angle and ensure the stability and safety of the vehicle.
Under the influence of centrifugal force, the rollover phenomenon may occur. The vehicle rolls over when the wheel is completely separated from the road surface, i.e., the vertical force of the wheel is reduced to zero. To overcome this problem, the active stabilizer bar is used at the front and rear axles of the vehicle. The active stabilizer bar works on the difference in fluid pressure inside the hydraulic motor. This article is aimed at studying the vehicle rollover dynamics when the hydraulic stabilizer bar is used. In this article, the model of a complex dynamic is established. This is a combination of the model of spatial dynamics, the model of nonlinear double-track dynamics, and the nonlinear tire model. The operation of the hydraulic actuator is controlled by a fuzzy algorithm with 3-inputs. The defuzzification rule is determined based on the combination of 27 cases. The process of calculation and simulation is done with four specific cases corresponding to steering angles. In each case, three situations were investigated. Besides, the speed of the vehicle is also gradually increased from v(1) to v(4). As a result of the simulation, which was performed in the MATLAB-Simulink environment, the output values such as roll angle, change of the vertical force, and roll index were significantly reduced when the active stabilizer bar was used. If the vehicle does not use the stabilizer bar, the vehicle may roll over in both the second, third, and fourth cases. If the vehicle uses a mechanical stabilizer bar, this also occurs in the third and fourth cases (only at a very high velocity, v(4)). However, the rollover phenomenon did not occur if the vehicle used a hydraulic stabilizer bar controlled by the fuzzy 3-inputs algorithm. In all investigated cases, the stability and safety of the vehicle are always guaranteed. Besides, the responsiveness of the controller is also very good. An experimental process needs to be conducted to verify the correctness of this research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available