4.5 Article

Electrochemical behavior of oxazoline-based plasma polymers for biosensing applications

Journal

PLASMA PROCESSES AND POLYMERS
Volume 20, Issue 8, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ppap.202200233

Keywords

electrochemical impedance spectroscopy; hydrophilic coatings; oxazoline; plasma polymerization; stability

Ask authors/readers for more resources

Plasma-polymerized polyoxazoline (POx) thin films can be used as a fast and solvent-free method for electrode functionalization. This study investigated the effects of current exposure, extended incubation, and repeated electrode rinses on the stability of polymethyloxazoline thin films. The films were found to become more diffusive after incubation and rinse steps, and changes in nanotopography were observed after exposure to current, suggesting a change in the film structure.
Plasma-polymerized polyoxazoline (POx) thin films offer a fast, scalable, and solvent-free method of electrode functionalization through the unique chemistry of the oxazoline ring. However, for POx to be a viable green alternative to existing surface modification approaches, the films should be able to withstand the processing steps involved in biosensing. Here, the effects that current exposure, extended incubation, and repeated electrode rinses have on the electrochemical and physical stability of polymethyloxazoline thin films are investigated. The films are observed to become more diffusive after incubation and rinse steps. While no significant changes in chemistry were observed, a marked change in nanotopography occurred after exposure to current, suggesting a change in the polymer film structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available