4.7 Article

Genome-wide analysis of bHLH gene family in Coptis chinensis provides insights into the regulatory role in benzylisoquinoline alkaloid biosynthesis

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 201, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2023.107846

Keywords

Coptis chinensis; bHLH transcription factor; Transcriptional regulation; Yeast one-hybrid; Benzylisoquinoline alkaloid biosynthesis

Categories

Ask authors/readers for more resources

This study provides comprehensive insights into the bHLH gene family in C. chinensis, identifying 143 CcbHLH genes that are unevenly distributed on nine chromosomes. Thirty of these genes are significantly expressed in the rhizomes of C. chinensis, and 11 of them are highly correlated with the contents of various alkaloids. Additionally, yeast one-hybrid experiments confirmed the regulatory roles of CcbHLH001 and CcbHLH0002 in the biosynthesis of BIAs.
Coptis chinensis Franch is a perennial species with high medical value. The rhizome of C. chinensis is a traditional Chinese medicine widely used for more than 2000 years in China. Its principal active ingredients are benzylisoquinoline alkaloids (BIAs). The basic helix-loop-helix (bHLH) transcription factors play an important regulatory role in the biosynthesis of plant secondary metabolites. However, the bHLH genes in C. chinensis have not been described, and little is known about their roles in alkaloid biosynthesis. In this study, a total of 143 CcbHLH genes (CcbHLHs) were identified and unevenly distributed on nine chromosomes. Phylogenetic analysis divided the 143 CcbHLH proteins into 26 subfamilies by comparison with Arabidopsis thaliana bHLH proteins. The majority CcbHLHs in each subgroup had similar gene structures and conserved motifs. Furthermore, the physicochemical properties, conserved motif, intron/exon composition, and cis-acting elements of CcbHLHs were analyzed. Transcriptome analysis revealed that 30 CcbHLHs were significantly expressed in the rhizomes of C. chinensis. Co-expression analysis revealed that 11 CcbHLHs were highly positively correlated with contents of various alkaloids of C. chinensis. Moreover, yeast one-hybrid experiments verified that CcbHLH001 and CcbHLH0002 could interact with the promoters of berberine biosynthesis pathway genes CcBBE and CcCAS, suggesting their regulatory roles in BIA biosynthesis. This study provides comprehensive insights into the bHLH gene family in C. chinensis and will support in-depth functional characterization of CcbHLHs involved in the regulation of protoberberine-type alkaloid biosynthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available