4.7 Article

Genetic Analysis and Molecular Identification of the Powdery Mildew Resistance in 116 Elite Wheat Cultivars/Lines

Journal

PLANT DISEASE
Volume -, Issue -, Pages -

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PDIS-04-23-0792-RE

Keywords

Blumeria graminis f. sp. tritici; genetic analysis; markers; resistance genes; wheat

Categories

Ask authors/readers for more resources

This study tested the reactions to powdery mildew for a collection of 600 wheat cultivars and breeding lines and identified 116 resistant genotypes. Among them, 87 showed single genic inheritance, 19 showed dual genic inheritance, and 10 showed multiple genic inheritance. Molecular marker analysis revealed the widespread use of the Pm2 gene in these genotypes and the presence of other Pm genes.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease worldwide. Host resistance is the preferred method for limiting the disease epidemic, protecting the environment, and minimizing economic losses. In the present study, the reactions to powdery mildew for a collection of 600 wheat cultivars and breeding lines from different wheat-growing regions were tested using the Bgt isolate E09. Next, 116 resistant genotypes were identified and then crossed with susceptible wheat cultivars/lines to produce segregating populations for genetic analysis. Among them, 87, 19, and 10 genotypes displayed single, dual, and multiple genic inheritance, respectively. To identify the Pm gene(s) in those resistant genotypes, 16 molecular markers for 13 documented Pm genes were used to test the resistant and susceptible parents and their segregating populations. Of the 87 wheat genotypes that fitted the monogenic inheritance, 75 carried the Pm2a allele. Three, two, one, and two genotypes carried Pm21, Pm6, Pm4, and the recessive genes pm6 and pm42, respectively. Four genotypes did not carry any of the tested genes, suggesting that they might have other uncharacterized or new genes. The other 29 wheat cultivars/lines carried two or more of the tested Pm genes and/or other untested genes, including Pm2, Pm5, Pm6, and/or pm42. It was obvious that Pm2 was widely used in wheat production, whereas Pm1, Pm24, Pm33, Pm34, Pm35, Pm45, and Pm47 were not detected in any of these resistant wheat genotypes. This study clarified the genetic basis of the powdery mildew resistance of these wheat cultivars/lines to provide information for their rational utilization in different wheat-growing regions. Moreover, some wheat genotypes which may have novel Pm gene(s) were mined to enrich the diversity of resistance source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available