4.5 Article

Serotonin and dopamine regulate the aggressiveness of swimming crabs (Portunus trituberculatus) in different ways

Journal

PHYSIOLOGY & BEHAVIOR
Volume 263, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.physbeh.2023.114135

Keywords

Animal personality; Aggressiveness; Serotonin; Dopamine; Calcium regulation; Energy metabolism

Ask authors/readers for more resources

Bioamines play a crucial role in regulating aggressive behavior in animals as neuroendocrine substances. This study investigated the effects of serotonin and dopamine on the aggressiveness of swimming crabs. The results showed that both serotonin and dopamine can enhance aggressive behavior in a dose-dependent manner.
Bioamines act as a pivotal part in the regulation of aggressive behavior in animals as a type of neuroendocrine, but the patterns of how they regulate aggressiveness in crustaceans are still unclear due to species-specific re-sponses. To determine the effects of serotonin (5-HT) and dopamine (DA) on the aggressiveness of swimming crabs (Portunus trituberculatus), we quantified their behavioral and physiological characteristics. The results showed that an injection of 5-HT at 0.5 mmol L-1 and 5 mmol L-1 could significantly enhance the aggressiveness of swimming crabs, as well as an injection of DA at 5 mmol L-1. The regulation of 5-HT and DA on aggressiveness is dose-dependent, and these two bioamines have different concentration thresholds that can trigger aggres-siveness changes. 5-HT could up-regulate the 5-HTR1 gene expression and increase lactate content at the thoracic ganglion as the aggressiveness enhances, suggesting that 5-HT may activate related receptors and neuronal excitability to regulate aggressiveness. As a result of DA injection at 5 mmol L-1, lactate content in the chela muscle and hemolymph increased, glucose content in the hemolymph increased, and the CHH gene was significantly up-regulated. Pyruvate kinase and hexokinase enzyme activities in the hemolymph increased, which accelerated the glycolysis process. These results demonstrate that DA regulates the lactate cycle, which provides substantial short-term energy for aggressive behavior. Both 5-HT and DA can mediate aggressive behavior in the crab by activating calcium regulation in muscle tissue. We conclude that the enhancement of aggressiveness is a process of energy consumption, in which 5-HT acts on the central nervous system to induce aggressive behavior, and DA affects muscle and hepatopancreas tissue to provide a large amount of energy. This study expands upon the knowledge of regulatory mechanisms of aggressiveness in crustaceans and offers a theoretical foundation for enhancing crab culture management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available