4.5 Article

Strain-dependent lung transcriptomic differences in cigarette smoke and LPS models of lung injury in mice

Journal

PHYSIOLOGICAL GENOMICS
Volume 55, Issue 6, Pages 259-274

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00152.2022

Keywords

acute lung injury; cigarette smoking; emphysema; gene expression; lung

Ask authors/readers for more resources

Cigarette smoking increases the risk of acute respiratory distress syndrome (ARDS) and causes emphysema. Smoke-exposed AKR mice were found to be more susceptible to LPS-induced acute lung injury (ALI) than C57BL/6 mice. Therefore, we investigated strain-dependent lung transcriptomic responses to cigarette smoke (CS).
Cigarette smoking increases the risk of acute respiratory distress syndrome (ARDS; Calfee CS, Matthay MA, Eisner MD, Benowitz N, 1767, 2012) and causes emphysema. However, it is not known why some individuals develop disease, whereas others do not. We found that smoke-exposed AKR mice were more susceptible to lipopolysaccharides (LPS)-induced acute lung injury (ALI) than C57BL/ 6 mice (Sakhatskyy P, Wang Z, Borgas D, Lomas-Neira J, Chen Y, Ayala A, Rounds S, Lu Q. Am J Physiol Lung Cell Mol Physiol 312: L56-L67, 2017); thus, we investigated strain-dependent lung transcriptomic responses to cigarette smoke (CS). Eight-week-old male AKR and C57BL/6 mice were exposed to 3 wk of room air (RA) or cigarette smoke (CS) for 6 h/day, 4 days/wk, followed by intratracheal instillation of LPS or normal saline (NS) and microarray analysis of lung homogenate gene expression. Other groups of AKR and C57 mice were exposed to RA or CS for 6 wk, followed by evaluation of static lung compliance and tissue elastance, morphometric evaluation for emphysema, or microarray analysis of lung gene expression. Transcriptomic analyses of lung homogenates show distinct strain-dependent lung transcriptional responses to CS and LPS, with AKR mice having larger numbers of genes affected than similarly treated C57 mice, congruent with strain differences in physiologic and inflammatory parameters previously observed in LPSinduced ALI after CS priming. These results suggest that genetic differences may underlie differing susceptibility of smokers to ARDS and emphysema. Strain-based differences in gene transcription contribute to CS and LPS-induced lung injury. There may be a genetic basis for smoking-related lung injury. Clinicians should consider cigarette smoke exposure as a risk factor for ALI and ARDS. NEW & NOTEWORTHY We demonstrate that transcriptomes expressed in lung homogenates also differ between the mouse strains and after acute (3 wk) exposure of animals to cigarette smoke (CS) and/or to lipopolysaccharide. Mouse strains also differed in physiologic, pathologic, and transcriptomic, responses to more prolonged (6 wk) exposure to CS. These data support a genetic basis for enhanced susceptibility to acute and chronic lung injury among humans who smoke cigarettes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available