4.7 Article

Different photoprotective strategies for white leaves between two co-occurring Actinidia species

Journal

PHYSIOLOGIA PLANTARUM
Volume 175, Issue 2, Pages -

Publisher

WILEY
DOI: 10.1111/ppl.13880

Keywords

-

Categories

Ask authors/readers for more resources

The white leaves of Actinidia kolomikta can turn pink, while the white leaves of A. polygama remain white. White leaves of A. kolomikta use a reflection strategy for photoprotection, while pink leaves resist photoinhibition through anthocyanin accumulation.
At the outer canopy, the white leaves of Actinidia kolomikta can turn pink but they stay white in A. polygama. We hypothesized that the different leaf colors in the two Actinidia species may represent different photoprotection strategies. To test the hypothesis, leaf optical spectra, anatomy, chlorophyll a fluorescence, superoxide (O-2(-)) concentration, photosystem II photo-susceptibility, and expression of anthocyanin-related genes were investigated. On the adaxial side, light reflectance was the highest for white leaves of A. kolomikta, followed by its pink leaves and white leaves of A. polygama, and the absorptance for white leaves of A. kolomikta was the lowest. Chlorophyll and carotenoid content of white and pink leaves in A. kolomikta were significantly lower than those of A. polygama, while the relative anthocyanin content of pink leaves was the highest. Chloroplasts of palisade cells of white leaves in A. kolomikta were not well developed with a lower maximum quantum efficiency of PSII than the other types of leaves (pink leaves of A. kolomikta and white leaves of A. Polygama at the inner/outer canopy). After high light treatment from the abaxial surface, F-v/F-m decreased to a larger extent for white leaves of A. kolomikta than pink leaf and white leaves of A. polygama, and its non-photochemical quenching was also the lowest. White leaves of A. kolomikta showed higher O-2(-) concentration compared to pink leaves under the same strong irradiance. The expression levels of anthocyanin biosynthetic genes in pink leaves were higher than in white leaves. These results indicate that white leaves of A. kolomikta apply a reflection strategy for photoprotection, while pink leaves resist photoinhibition via anthocyanin accumulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available