4.8 Article

Discrete Time Crystal Enabled by Stark Many-Body Localization

Journal

PHYSICAL REVIEW LETTERS
Volume 130, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.120403

Keywords

-

Ask authors/readers for more resources

In this letter, a simple disorder-free periodically driven model is proposed that exhibits nontrivial discrete time crystal (DTC) order stabilized by Stark many-body localization (MBL). The existence of the DTC phase is demonstrated through analytical analysis and numerical evidence. This new DTC model opens up a new promising avenue for experiments and deepens our understanding of DTCs.
Discrete time crystals (DTCs) have recently attracted increasing attention, but most DTC models and their properties are only revealed after disorder average. In this Letter, we propose a simple disorder-free periodically driven model that exhibits nontrivial DTC order stabilized by Stark many-body localization (MBL). We demonstrate the existence of the DTC phase by analytical analysis from perturbation theory and convincing numerical evidence from observable dynamics. The new DTC model paves a new promising way for further experiments and deepens our understanding of DTCs. Since the DTC order does not require special quantum state preparation and the strong disorder average, it can be naturally realized on the noisy intermediate-scale quantum hardware with much fewer resources and repetitions. Moreover, in addition to the robust subharmonic response, there are other novel robust beating oscillations in the Stark-MBL DTC phase that are absent in random or quasiperiodic MBL DTCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available