4.8 Article

Field-Tunable Berezinskii-Kosterlitz-Thouless Correlations in a Heisenberg Magnet

Journal

PHYSICAL REVIEW LETTERS
Volume 130, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.086704

Keywords

-

Ask authors/readers for more resources

We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations in the weakly coupled spin-1/2 Heisenberg layers of the molecular-based bulk material. The application of laboratory magnetic fields induces a substantial XY anisotropy of the spin correlations, providing a significant BKT regime. We use nuclear magnetic resonance measurements and quantum Monte Carlo simulations to probe and study the spin correlations.
We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations in the weakly coupled spin-1=2 Heisenberg layers of the molecular-based bulk material [Cu(pz)2(2-HOpy)2](PF6)2. At zero field, a transition to long-range order occurs at 1.38 K, caused by a weak intrinsic easy-plane anisotropy and an interlayer exchange of J'=kB approximate to 1 mK. Because of the moderate intralayer exchange coupling of J=kB = 6.8 K, the application of laboratory magnetic fields induces a substantial XY anisotropy of the spin correlations. Crucially, this provides a significant BKT regime, as the tiny interlayer exchange J' only induces 3D correlations upon close approach to the BKT transition with its exponential growth in the spin-correlation length. We employ nuclear magnetic resonance measurements to probe the spin correlations that determine the critical temperatures of the BKT transition as well as that of the onset of long-range order. Further, we perform stochastic series expansion quantum Monte Carlo simulations based on the experimentally determined model parameters. Finite-size scaling of the in-plane spin stiffness yields excellent agreement of critical temperatures between theory and experiment, providing clear evidence that the nonmonotonic magnetic phase diagram of [Cu(pz)2(2-HOpy)2](PF6)2 is determined by the field-tuned XY anisotropy and the concomitant BKT physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available