4.4 Article

Structural basis of antibacterial photodynamic action of curcumin against S. aureus

Journal

PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY
Volume 43, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.pdpdt.2023.103654

Keywords

Antimicrobial photodynamic therapy; S; aureus; Curcumin; Molecular modeling; Docking analysis

Categories

Ask authors/readers for more resources

This study evaluated the action of curcumin as a photosensitizer against S. aureus through both experimental and computational methods. The results showed that the photodynamic effects and photobleaching process of curcumin were related to its molecular orbital energies. In addition, molecular docking analysis demonstrated that curcumin could bind to the tyrosyl-tRNA synthetase of S. aureus. Overall, this study provided insights into the mechanism of action of curcumin as a photosensitizer for the inactivation of S. aureus bacteria.
Antimicrobial photodynamic therapy (aPDT) is an alternative tool to commercial antibiotics for the inactivation of pathogenic bacteria (e.g., S. aureus). However, there is still a lack of understanding of the molecular modeling of the photosensitizers and their mechanism of action through oxidative pathways. Herein, a combined experimental and computational evaluation of curcumin as a photosensitizer against S. aureus was performed. The radical forms of keto-enol tautomers and the energies of curcumin's frontier molecular orbitals were evaluated by density functional theory (DFT) to point out the photodynamic action as well as the photobleaching process. Furthermore, the electronic transitions of curcumin keto-enol tautomers were undertaken to predict the transitions as a photosensitizer during the antibacterial photodynamic process. Moreover, molecular docking was used to evaluate the binding affinity with the S. aureus tyrosyl-tRNA synthetase as the proposed a target for curcumin. In this regard, the molecular orbital energies show that the curcumin enol form has a character of 4.5% more basic than the keto form - the enol form is a more promising electron donor than its tautomer. Curcumin is a strong electrophile, with the enol form being 4.6% more electrophilic than its keto form. In addition, the regions susceptible to nucleophilic attack and photobleaching were evaluated by the Fukui function. Regarding the docking analysis, the model suggested that four hydrogen bonds contribute to the binding energy of curcumin's interaction with the ligand binding site of S. aureus tyrosyl-tRNA synthetase. Finally, residues Tyr36, Asp40, and Asp177 contact curcumin and may contribute to orienting the curcumin in the active area. Moreover, curcumin presented a photoinactivation of 4.5 log unit corroborating the necessity of the combined action of curcumin, light, and O2 to promote the photooxidation damage of S. aureus. These computational and experimental data suggest insights regarding the mechanism of action of curcumin as a photosensitizer to inactivate S. aureus bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available