4.7 Article

Discovery of triphenylphosphonium (TPP)-conjugated N-(1,1′-biphenyl)-2-yl aliphatic amides as excellent fungicidal candidates

Journal

PEST MANAGEMENT SCIENCE
Volume 79, Issue 8, Pages 2920-2933

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.7470

Keywords

fungicides; SDH inhibitors; mitochondria-targeting; structure-activity relationship; potato late blight

Ask authors/readers for more resources

By optimizing the lead compound, the contribution of biarylamine in CBUA-TPP (1) analogs to the fungicidal activity is clarified. Several compounds, represented by 2-1, have great potential as fungicide candidates.
BACKGROUNDSuccinate dehydrogenase inhibitors (SDHIs) are the fastest growing agricultural fungicides at present, but their rapidly growing resistance is a serious problem for their application. Previously, we screened out a fungicidal lead compound CBUA-TPP (1) through triphenylphosphonium (TPP)-driven mitochondrial-targeting strategy. The targeting led to the rapid accumulation of 1 in mitochondria and the saturation inhibition of complex II in a short time, resulting in electron leakage and the explosion of reactive oxygen species (ROS). However, the contribution of biphenyl-2-amines to the activity of these compounds and their structure-activity relationship are still unknown. RESULTSTwo series of CBUA-TPP (1) analogues (series 2 and 3) were designed and synthesized. The bioassay results indicated that series 2 compounds generally showed much higher fungicidal activities than series 3, suggesting the crucial contribution of the biarylamine module in these targeted molecules and the pyridinyl substitution of phenyl is unfavorable to their activities. Interestingly, these two series of compounds displayed almost opposite substituent effects. Several compounds showed excellent fungicidal activities in vitro, among which compound 2-1 exhibited excellent field control efficacy on potato late blight. CONCLUSIONBy optimizing the lead compound, the contribution of biarylamine in CBUA-TPP (1) analogs to the fungicidal activity is clarified. Several compounds, represented by 2-1, have great potential as fungicide candidates. They exhibit high and broad-spectrum fungicidal activities and are highly effective against common pathogenic fungi infecting vegetables and fruits both in vitro and field control. It not only provided a new choice for controlling these diseases, but its low resistance tendency also provided a better scheme for resistance management. (c) 2023 Society of Chemical Industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available