4.6 Article

Experimental 61-partite entanglement on a three-dimensional photonic chip

Journal

OPTICS EXPRESS
Volume 31, Issue 11, Pages 17782-17791

Publisher

Optica Publishing Group
DOI: 10.1364/OE.492725

Keywords

-

Categories

Ask authors/readers for more resources

Researchers propose and experimentally demonstrate heralded multipartite entanglements on a three-dimensional photonic chip. By controlling the coherent evolution of a single photon in multiple spatial modes, they dynamically tune the high-order W-states of different orders in a single photonic chip. Using an effective witness, they observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. These results offer insights into the accessible size of quantum entanglements and may advance large-scale quantum information processing applications.
Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available