4.6 Article

Fourier ptychographic topography

Journal

OPTICS EXPRESS
Volume 31, Issue 7, Pages 11007-11018

Publisher

Optica Publishing Group
DOI: 10.1364/OE.481712

Keywords

-

Categories

Ask authors/readers for more resources

Topography measurement is crucial for surface characterization and inspection applications. This study presents a novel topography technique called Fourier ptychographic topography (FPT), which combines a computational microscope and a phase retrieval algorithm to achieve wide-field-of-view and high-resolution topography reconstruction with nanoscale accuracy. FPT has important implications for surface characterization, semiconductor metrology, and inspection applications.
Topography measurement is essential for surface characterization, semiconductor metrology, and inspection applications. To date, performing high-throughput and accurate topography remains challenging due to the trade-off between field-of-view (FOV) and spatial resolution. Here we demonstrate a novel topography technique based on the reflection-mode Fourier ptychographic microscopy, termed Fourier ptychograhpic topography (FPT). We show that FPT provides both a wide FOV and high resolution, and achieves nanoscale height reconstruction accuracy. Our FPT prototype is based on a custom-built computational microscope consisting of programmable brightfield and darkfield LED arrays. The topography reconstruction is performed by a sequential Gauss-Newton-based Fourier ptychographic phase retrieval algorithm augmented with total variation regularization. We achieve a synthetic numerical aperture (NA) of 0.84 and a diffraction-limited resolution of 750 nm, increasing the native objective NA (0.28) by 3x, across a 1.2 x 1.2 mm2 FOV. We experimentally demonstrate the FPT on a variety of reflective samples with different patterned structures. The reconstructed resolution is validated on both amplitude and phase resolution test features. The accuracy of the reconstructed surface profile is benchmarked against high-resolution optical profilometry measurements. In addition, we show that the FPT provides robust surface profile reconstructions even on complex patterns with fine features that cannot be reliably measured by the standard optical profilometer. The spatial and temporal noise of our FPT system is characterized to be 0.529 nm and 0.027 nm, respectively.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available