4.5 Article

Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese

Journal

OECOLOGIA
Volume 202, Issue 2, Pages 287-298

Publisher

SPRINGER
DOI: 10.1007/s00442-023-05386-x

Keywords

Annual cycle; Day length; Foraging; Migration; Residency

Categories

Ask authors/readers for more resources

Performing migratory journeys comes with energetic costs and requires compensation within the annual cycle. A study on barnacle geese showed that migratory individuals were more active than residents throughout most of the year, with the largest differences observed during the periods of spring and autumn migration. Migratory geese also exhibited longer night-time activity, indicating the need for extended foraging during migration.
Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available