4.4 Article

Posttreatment with Ospemifene Attenuates Hypoxia- and Ischemia-Induced Apoptosis in Primary Neuronal Cells via Selective Modulation of Estrogen Receptors

Journal

NEUROTOXICITY RESEARCH
Volume 41, Issue 4, Pages 362-379

Publisher

SPRINGER
DOI: 10.1007/s12640-023-00644-5

Keywords

Ospemifene; SERMs; Neuroprotection; Hypoxia; Ischemia; Primary neurons

Categories

Ask authors/readers for more resources

Stroke and perinatal asphyxia cause neuronal cell damage and have high mortality rates worldwide each year. This study investigated the neuroprotective effects of ospemifene, a selective estrogen receptor modulator, in primary neocortical cell cultures subjected to hypoxia and/or ischemia. Ospemifene showed robust neuroprotective potential by reversing hypoxia- and ischemia-induced changes in LDH release, neurodegeneration, and metabolic activity, mainly mediated by ESR1 and GPER1.
Stroke and perinatal asphyxia have detrimental effects on neuronal cells, causing millions of deaths worldwide each year. Since currently available therapies are insufficient, there is an urgent need for novel neuroprotective strategies to address the effects of cerebrovascular accidents. One such recent approach is based on the neuroprotective properties of estrogen receptors (ERs). However, activation of ERs by estrogens may contribute to the development of endometriosis or hormone-dependent cancers. Therefore, in this study, we utilized ospemifene, a novel selective estrogen receptor modulator (SERM) already used in dyspareunia treatment. Here, we demonstrated that posttreatment with ospemifene in primary neocortical cell cultures subjected to 18 h of hypoxia and/or ischemia followed by 6 h of reoxygenation has robust neuroprotective potential. Ospemifene partially reverses hypoxia- and ischemia-induced changes in LDH release, the degree of neurodegeneration, and metabolic activity. The mechanism of the neuroprotective actions of ospemifene involves the inhibition of apoptosis since the compound decreases caspase-3 overactivity during hypoxia and enhances mitochondrial membrane potential during ischemia. Moreover, in both models, ospemifene decreased the levels of the proapoptotic proteins BAX, FAS, FASL, and GSK3 beta while increasing the level of the antiapoptotic protein BCL2. Silencing of specific ERs showed that the neuroprotective actions of ospemifene are mediated mainly via ESR1 (during hypoxia and ischemia) and GPER1 (during hypoxia), which is supported by ospemifene-evoked increases in ESR1 protein levels in hypoxic and ischemic neurons. The results identify ospemifene as a promising neuroprotectant, which in the future may be used to treat injuries due to brain hypoxia/ischemia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available