4.5 Article

Acute Low Dose Naltrexone Increases β-Endorphin and Promotes Neuronal Recovery Following Hypoxia-Ischemic Stroke in Type-2 Diabetic Mice

Journal

NEUROCHEMICAL RESEARCH
Volume 48, Issue 9, Pages 2835-2846

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-023-03938-4

Keywords

Opioid growth factor; beta-endorphin; Naltrexone; Diabetes; Hypoxia-ischemia

Ask authors/readers for more resources

Diabetic patients have a suppressed immune system, both in the periphery and within the central nervous system, which contributes to their poor outcome after ischemic stroke. Low doses of naltrexone (LDN) can improve clinical outcomes by balancing inflammatory factors and promoting neuronal recovery. In the diabetic mouse model, LDN treatment increased beta-endorphin and opioid growth factor levels, and improved neuronal recovery post hypoxia-ischemia.
Diabetic patients experience significant mortality and poor recovery following ischemic stroke. Our clinical and basic science studies demonstrate an overall immune suppression in the periphery of diabetic stroke patients, as well as within the central nervous system (CNS) of type-2 diabetic mice following hypoxia- ischemia (HI). Low doses of naltrexone (LDN) improved clinical outcomes in many autoimmune diseases by acting on opioid receptors to release beta-endorphin which in turn balances inflammatory cytokines and modulates the opioid growth factor (OGF)-opioid growth factor receptor (OGFr) pathway. We hypothesized that in our model of diabetic mice, LDN treatment will induce the release of beta-endorphin and improve CNS response by promoting neuronal recovery post HI. To test this hypothesis, we induced HI in 10 week old male db/db and db/ + mice, collected tissue at 24 and 72 h post HI, and measured OGF levels in plasma and brain tissue. The infarct size and number of OGF + neurons in the motor cortex, caudate and hippocampus (CA3) were measured. Following HI, db/db mice had significant increases in brain OGF expression, increased infarct size and neurological deficits, and loss of OGFr + neurons in several different brain regions. In the second experiment, we injected LDN (1 mg/kg) intraperitoneally into db/db and db/ + mice at 4, 24, and 48 h post HI, and collected brain tissue and blood at 72 h. Acute LDN treatment increased beta-endorphin and OGF levels in plasma and promoted neuronal recovery in db/db mice compared to phosphate buffer saline (PBS)-treated diabetic mice suggesting a protective or regenerative effect of LDN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available