4.6 Article

Motor neuron-specific RhoA knockout delays degeneration and promotes regeneration of dendrites in spinal ventral horn after brachial plexus injury

Journal

NEURAL REGENERATION RESEARCH
Volume 18, Issue 12, Pages 2757-2761

Publisher

WOLTERS KLUWER MEDKNOW PUBLICATIONS
DOI: 10.4103/1673-5374.373657

Keywords

brachial plexus; conditional knockout; degeneration; dendrites; motor neuron; peripheral nerve injury; regeneration; RhoA; spinal cord; ventral horn

Ask authors/readers for more resources

This study investigated the potential role of RhoA in dendrite development and regeneration. The results showed that RhoA knockout in motor neurons attenuated dendrite degeneration and promoted dendrite regeneration after peripheral nerve injury.
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults. Peripheral axotomy of motor neurons results in the retraction of dendritic arbors, and the dendritic arbor can be re-expanded when reinnervation is allowed. RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration. However, the role of RhoA in dendrite degeneration and regeneration is unknown. In this study, we explored the potential role of RhoA in dendrites. A line of motor neuronal RhoA conditional knockout mice was developed by crossbreeding HB9(Cre+) mice with RhoA(flox/flox) mice. We established two models for assaying dendrite degeneration and regeneration, in which the brachial plexus was transection or crush injured, respectively. We found that at 28 days after brachial plexus transection, the density, complexity, and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice. Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28-56 days. The density, complexity, and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice. These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available