4.5 Article

Architecture of the ESCPE-1 membrane coat

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 30, Issue 7, Pages 958-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41594-023-01014-7

Keywords

-

Ask authors/readers for more resources

Using cryo-electron tomography, Lopez-Robles, Scaramuzza, Astorga-Simon, Ishida et al. solve the architecture of ESCPE-1, a protein scaffold that mediates the recycling of cargo from endosome to trans-Golgi network and plasma membrane in tubular carriers. The study reveals that ESCPE-1 has a single-layer coat organization and suggests that synergistic interactions between ESCPE-1 protomers, phosphoinositides, and cargo molecules drive tubule formation.
Using cryo-electron tomography, Lopez-Robles, Scaramuzza, Astorga-Simon, Ishida et al. solve the architecture of ESCPE-1, a protein scaffold that mediates the recycling of cargo from endosome to trans-Golgi network and plasma membrane in tubular carriers. Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available